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Invariant Manifold Tracking for the First-Order
Nonlinear Hill’s Equations

Jason W. Mitchell
∗

Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

David L. Richardson
†

University of Cincinnati, Cincinnati OH 45221

An approach to provide nonlinear active control for the first-order nonlinear classical Hill’s equa-
tions is described. Both the linearized and nonlinear Hill’s equations are controlled to remain close
to specific invariant manifolds defined through the various system Hamiltonians. It is then shown
that trajectories similar to the periodic trajectories of the linearized system can be maintained by
the nonlinear equations on invariant manifolds defined by the linearized system of equations. Forc-
ing the nonlinear system trajectories onto an invariant manifold of the linearized system, with an
appropriate choice of initial conditions, provides a significant reduction in the along-track drift of
the first-order nonlinear Hill’s equations as compared to the linearized equations. There is also a
small drift reduction in the radial coordinate direction. The cross-track position suffers only a slight
increase in the maximum amplitude of its oscillation.

Introduction

INCREASED interest in multiple satellite formation flight
is driving the development of control schemes to provide

efficient formation keeping.1–3 Often, these investigations
rely on the Clohessy-Wiltshire equations,4 i.e. linearized
Hill’s equations,5 to describe the relative motion of satel-
lites in nearly circular orbits. With the first-order nonlinear
Hill’s equations, as is frequently the case outside linear sys-
tem theory, major hurdles in control system design include
determining the form of the control and when control should
be applied. These difficulties are particularly severe in the
control of artificial satellites were control authority is fuel-
limited and fuel availability is restricted by launch weight.
All this is exacerbated by perturbations due to the Earth’s
gravitational field, drag, solar radiation pressure, and third-
body effects. Such disturbances significantly impact the
evolution of the system’s dynamics. Fortunately, it is fre-
quently possible to mine the continuous system dynamics,
governed by differential-algebraic equations, for additional
information to enhance the control system design.

Because linearized models cannot provide a complete de-
scription of relative motion, we elected to explore the dy-
namics and control of the nonlinear Hill’s system by includ-
ing first-order nonlinear effects in addition to those gener-
ated by the linear equations. The effects of the asphericity of
the Earth play a central role in the design of control schemes
for long-term formation keeping. These effects are similar
in magnitude to those nonlinear contributions considered
herein, and so an analysis of the nonlinear Hill’s effects on
the motion and control dynamics was deemed appropriate.

In the present paper, we investigate the dynamical prop-
erties of the linearized and first-order nonlinear Hill’s equa-
tions to control relative satellite motion described by the
first-order nonlinear Hill’s equations using a modification of
a scheme first presented by Baumgarte.6 We begin with a
brief review of Hill’s equations.
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First-Order Nonlinear Hill’s Equations

Consider two small satellites, a leader and a follower
satellite, in a drag-free orbit about a spherical central body.
Because each satellite experiences only the central force field
of the central body, the individual satellite accelerations are
given by

r̈i = −
(

µ/ri
3
)

ri, (1)

where the subscript i indicates each satellite’s index: 0 for
the leader satellite and 1 or higher for additional follower
satellites. Positions relative to the circular orbiting leader
satellite are written as

ρi = ri − r0 = Xi êx + Yi êy + Zi êz, for i > 0, (2)

where as with Hill’s notation êx, êy, and êz form a local
dextral system of coordinates with origin at the leader as
seen in Fig. 1. The êx-axis lies in the direction of the radial
line outward from the central body (Earth), êy is oriented
in the along-track (instantaneous velocity) direction and êz

lies along the orbit normal in the direction of the angular
momentum vector.

When we differentiate Eq. (2), the relative follower accel-
erations are given by

ρ̈i =
(

µ/r0

3
) [

r0 −
(

r0

2/ri
3
)

ri

]

. (3)

Taking i = 1 and dropping that subscript, for r = r0 + ρ,
we have

(

r/r3
)

=
[

(r0 + ρ) /r0

3
]

(

1 − 3

2

{[

2 (r0 · ρ) + ρ2
]

/r0

2
}

+ 15

8

[

2 (r0 · ρ) /r0

2
]2

+ O
(

ρ3
)

)

. (4)

To complete the algebra, we substitute Eq. (4) into Eq. (3),
neglect terms of O

(

ρ3
)

, and equate the result to the accel-
eration of the rotating frame while noting that the frame’s
rate n =

√
(µ/r0

3) is constant. In addition, we nondimen-
sionalize the length and time scales by the leader’s circular
orbit radius r0 and mean motion n, respectively, such that
ρ/r0 = [X Y Z]T /r0 = [x y z]T and τ = nt. Thus, includ-
ing first-order nonlinear terms in Hill’s equations, using the
notation (′) = d/dτ for differentiation, results in the system
of equations given by

x′′ − 2y′ − 3x = − 3

2

(

2x2 − y2 − z2
)

, (5a)

y′′ + 2x′ = 3xy, (5b)

z′′ + z = 3xz, (5c)

622



MITCHELL AND RICHARDSON

PSfrag replacements
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Fig. 1 Leader-follower geometry with êx × êy = êz.

which can be obtained from the Lagrangian

L = 1

2

(

x′2 + y′2 + z′2
)

+
(

xy′ − yx′
)

+ 1

2

(

3x2 − z2
)

− 1

2

(

2x3 − 3xy2 − 3xz2
)

. (6)

Linearized Hill’s Equations

By taking zero right-hand sides of Eqs. (5), we obtain
the nondimensional, drag-free, linearized Hill’s equations7

describing the motion of a follower satellite relative to a
circular-orbiting, and possibly fictitious, leader satellite,

x′′ − 2y′ − 3x = 0, (7a)

y′′ + 2x′ = 0, (7b)

z′′ + z = 0. (7c)

Equations (7) can be obtained from the Lagrangian

L = 1

2

(

x′2 + y′2 + z′2
)

+
(

xy′ − yx′
)

+ 1

2

(

3x2 − z2
)

, (8)

and admit an analytical solution given by

x(τ) = − 2

3
A2 + 1

2
(A4 cos τ + A3 sin τ), (9a)

y(τ) = A1 + A2τ + A3 cos τ − A4 sin τ, (9b)

z(τ) = A5 cos τ + A6 sin τ. (9c)

When it is known that the parameters Ai (i = 1, 6) are
related to the initial conditions by

A1 = y0 − 2x′

0, (10a)

A2 = −3
(

2x0 + y′

0

)

, (10b)

A3 = 2x′

0, (10c)

A4 = −2
(

3x0 + 2y′

0

)

, (10d)

A5 = z0, (10e)

A6 = z′

0, (10f)

it is clear from Eqs. (9) that periodic solutions are obtained
by requiring

A2 = −3
(

2x0 + y′

0

)

= 0, (11)

which reduces to the condition

y′

0 = −2x0. (12)

The resulting periodic trajectories about the leader satellite
are highly desirable for formation-keeping considerations.

Comparing the Linearized and Nonlinear Motion

When we choose a nominal altitude of 500 km and an ini-
tial separation of 500m radially above the leader satellite,
i.e. y0 = 0, along with a cross-track separation of 50m,
x′

0 = z′

0 = 0, and y′

0 given by Eq. (12), the relative posi-
tion for the duration of approximately one day (nearly 16

Table 1 Initial conditions

Pos. [km] Rate [km/s]

X0 0.500 X ′

0 0.000
Y0 0.000 y′

0 −2x0

Z0 0.050 Z ′

0 0.000

Table 2 Comparison of linear to uncontrolled
first-order nonlinear dynamics for one day

q ‖q‖2 ‖q‖∞
∆X`n, m 1.944 284e+00 8.166 285e−02
∆Y`n, m 9.865 215e+01 5.425 019e+00
∆Z`n, m 1.954 143e−01 8.207 369e−03
∆X ′

`n, m/s 1.267 349e−03 7.070 782e−05
∆Y ′

`n, m/s 2.648 508e−03 1.600 963e−04
∆Z′

`n, m/s 1.273 716e−04 7.106 087e−06

−500

0

500

−1000

−500

0

500

1000
−50

0

50

X [m]Y [m]

Z 
[m

]

Fig. 2 Follower positions relative the leader for approx-
imately one day using linear Hill’s equations.

orbit revolutions) can be seen in Fig. 2. This trajectory is
desirable because it is configuration-preserving.

The first-order nonlinear terms in Eqs. (5) produce non-
negligible drifts in the along-track and radial directions
as well as their rates. The resulting trajectories about
the leader satellite are no longer the highly desirable peri-
odic trajectories produced by the linearized Hill’s equations,
Eqs. (7), subject to the condition given by Eq. (12). Using
the same initial conditions as for the linearized system (Ta-
ble 1), the nonlinear positions initially appear to be identical
to Fig. 2. Upon closer inspection, we see a difference in po-
sitions and rates for the same periodic initial conditions as
demonstrated by Figs. 3–5 and Table 2. The nonlinear solu-
tion’s radial (∆X`n) and cross-track (∆Z`n) deviations from
the periodic linear solution are several orders of magnitude
smaller than the along-track error that is introduced. In the
along-track case, the follower satellite advances on the leader
satellite by more than 5 m/day. This drift is the same order
of magnitude as that produced by drag at 500 m altitude
and accordingly is a significant contribution to formation-
keeping considerations.

When we consider the many differences among force
model descriptions for the motion, it is convenient to obtain
a mechanism that can accommodate an increase in model
fidelity while allowing the improved system to be controlled
so that the resulting (nonlinear) trajectories can be made
very similar to that of the periodic linear solutions. In the
sequel, we apply and test a scheme to provide such con-
trol stemming only from the dominant contributions arising
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Fig. 3 Radial position difference between the linear and
nonlinear Hill’s equations.
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Fig. 4 Along-track position difference between the lin-
ear and nonlinear Hill’s equations.
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Fig. 5 Cross-track position difference between the linear
and nonlinear Hill’s equations.

from the nonlinear Hill’s equations. Our purpose here is
to demonstrate control considerations and costs that arise
strictly from these nonlinear contributions.

In the following section, we summarize our approach sug-
gested by the work of Baumgarte.

Nonlinear Control Through Invariant
Manifold Tracking

We base our control scheme on the notion that it is pos-
sible to force the trajectories of the nonlinear system onto
selected manifolds that are prescribed as functions of the
configuration variables q, the generalized velocities q′ and
possibly the time. In actuality, these functions are imposed
on the system as equality constraints having the general
form

f
(

q,q′, t
)

= 0. (13)

No assumptions concerning the linearity or nonlinearity of
these functions are required.

To ensure, as best we can, that the system trajectories are
forced onto a constraint manifold (or manifolds), we require
that the equality constraint expressed in Eq. (13) be altered
as suggested by Baumgarte so that the original constraints
are maintained without increasing error. These artificial
constraint equations are constructed as simple linear differ-
ential equations whose solutions are asymptotically stable
to the original constraint in the independent variable. The
artificial constraint equations we found useful in our analysis
have the general form

f ′ + γf = 0, (14)

where γ > 0 is an arbitrary weighting function that is
positive throughout the time domain of application. The
solution to this equation is the expression

f = A exp

(

−
∫

γ dτ

)

, (15)

which has the property that as time progresses, f −→ 0 and
the system trajectories tend to remain near the manifold
specified in Eq. (13). We call this control process invari-
ant manifold tracking. By writing the equations of motion
appropriately, γ can be seen to function as the gain for (non-
linear) feedback control accelerations.

We have found it a straight-forward process to incorpo-
rate these artificial constraints into the equations of mo-
tion by applying the second-order form of the Generalized
d’Alembert-Lagrange Principles8 written for m configura-
tion variables qr as the scalar equation

m
∑

r=1

(Λqr
(L) − Q∗

r) δq′′r = 0. (16)

In this expression, L is the system Lagrangian, Q∗

r is
the generalized nonconservative force associated with co-
ordinate qr, δq′′r is a kinematically arbitrary variation of
d2qr/dτ2 that does not violate the artificial constraint equa-
tion(s), Eq. (14), and the Lagrange functional operator Λ is

Λqr
(L) =

d

dτ

(

∂L

∂q′r

)

− ∂L

∂qr

. (17)

Implicit in this δ notation is the understanding that the
variations of the derivatives of lower orders and that of time
are zero. In terms of the configuration variables and their
derivatives, the second-order d’Alembert-Lagrange Varia-
tional Principle provides

δqr = δq′r = δt = 0, r = 1, . . . , m. (18)

Accordingly, the second-order variation of the artificial con-
straint relation of Eq. (14) is

m
∑

r=1

∂f ′′

∂q′′r
δq′′r = 0. (19)
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Solving this equation for one of the variations δq′′

i in terms
of the remaining δq′′

r , for r 6= i, provides a substitution into
Eq. (16) that produces an equation whose factors δq′′

r are
all linearly independent. Setting their coefficients to zero
provides the constrained equations of motion. The system of
m equations is completed with the addition of the artificial
constraint relation of Eq. (14).

From a dynamical systems perspective, the system Hamil-
tonian H can define an invariant or constraint manifold of
the chosen force model.9 If a choice of initial conditions
pertaining to a specific model results in a periodic trajec-
tory, the Hamiltonian defines the manifold where upon this
periodic solution must remain. Any unmodeled perturba-
tions that impinge on the given system will result in a
real-world deviation from the invariant manifold that was
defined through the approximating equations. Actual con-
trol costs for maintaining a periodic state based on using
the linear system of Hill’s equations as an approximating
model are not negligible. The dominant contributions from
the nonlinear Hill’s equations are one of the many signifi-
cant contributors to these costs and is the subject of our
investigation.

To gain a baseline reference for the nonlinear control
structure, we first apply our control method of invariant
manifold tracking to the linear Hill’s equations and then to
the first-order nonlinear Hill’s equations. We follow that
development with a comparison of control costs needed to
force the trajectories of the nonlinear system back onto the
manifold defined by periodic solutions of the linear equa-
tions.

Control for Linear Hill’s Equations

The Hamiltonian for the linear Hill’s equations H` is an
integral of the motion and is written

H` = 1

2

(

x′2 + y′2 + z′2
)

− 1

2

(

3x2 − z2
)

. (20)

This expression will serve as the principal constraint mani-
fold in our nonlinear control efforts. Written in the form of
Eq. (13), the constraint becomes

f` = H` − H`0 = 0, (21)

where the constant H`0 represents the linear Hamiltonian
evaluated with the periodic initial conditions. Then, the
artificial constraint is

f ′

` + γf` = 0. (22)

Taking the second-order variation as outlined above gives

z′δz′′ = −
[

x′δx′′ + y′δy′′
]

, (23)

and we consider (arbitrarily) that δz′′ is the dependent vari-
ation.

In terms of our x, y, z configuration variables, the funda-
mental variational equation, Eq. (16) becomes

Λxδx′′ + Λyδy′′ + Λzδz′′ = 0. (24)

Substituting for δz′′ produces a reduced fundamental equa-
tion, whose variations are linearly independent, such that
the coefficients of the remaining variations must satisfy

z′Λx − x′Λz = 0, (25a)

z′Λy − y′Λz = 0. (25b)

These are the constrained equations of motion which must
be solved simultaneously along with the artificial constraint,
Eq. (22).

By algebraic rearrangement, these equations can be
rewritten so that the right-hand sides function as control

accelerations of the original unconstrained equations of mo-
tion. These controlled linear Hill’s equations are

x′′ − 2y′ − 3x = −
(

x′/v2
)

γf`, (26a)

y′′ + 2x′ = −
(

y′/v2
)

γf`, (26b)

z′′ + z = −
(

z′/v2
)

γf`, (26c)

where f` is given in Eq. (21), and v2 = x′2 + y′2 + z′2.

Control for Nonlinear Hill’s Equations

Our main objective is to investigate the control costs as-
sociated with controlling the nonlinear Hill’s system to the
constraint manifold corresponding to the Hamiltonian of the
linearized Hill’s equations. In this way we expect to deter-
mine the effects of the nonlinear contributions on control
strategies that force the relative motion trajectories back to
periodic solutions known for the linear Hill’s equations.

To this end, we apply the artificial constraint specified
by Eq. (22) to the nonlinear Lagrangian system of Eq. (6),
whose complete Hamiltonian truncated to first-order is

Hn = 1

2

(

x′2 + y′2 + z′2
)

− 1

2

(

3x2 + z2
)

+ 1

2

(

2x3 − 3xy2 − 3xz2
)

. (27)

As before, the fundamental variational equation is given by
Eq. (24).

The linear dependencies among the second-order varia-
tions are the same as given in Eq. (23), producing the
independent variations found in Eqs. (25). By proceeding in
the same fashion as for the linear equations above, using the
artificial constraint of Eq. (22), we arrive at our controlled
form of the first-order nonlinear Hill’s equations:

x′′ − 2y′ − 3x + 3

2

(

2x2 − y2 − z2
)

=
(

x′/v2
)

g, (28a)

y′′ + 2x′ − 3xy =
(

y′/v2
)

g, (28b)

z′′ + z − 3xz =
(

z′/v2
)

g, (28c)

where g is given by

g = 3

2
x′

(

2x2 − y2 − z2
)

− 3xyy′ − 3xzz′ − γf`, (29)

with f` given by Eq. (21), and v2 = x′2 + y′2 + z′2.

Numerical Testing
When we use the same initial conditions that lead to

periodic linear system trajectories as described in the In-
troduction, the nonlinear Hill’s equations, subject to the
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Fig. 6 `∞-norm of position errors as functions of control
gain γ.
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control accelerations of Eqs. (28), were compared to the lin-
ear system of Eqs. (7) to estimate ∆V requirements that
minimized the along-track error. Because it is not generally
feasible to obtain analytically an optimal gain γ? a priori,
numerical experimentation was used to determine a suitable
near-optimal gain γ∗ that produced the desired trajectories.
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Fig. 7 `∞-norm of position errors as functions of control
gain 8 ≤ γ ≤ 14.
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Figures 6–9 show the normed position differences in the
search for γ∗ where each data point spans one day, i.e. ap-
proximately 16 orbital revolutions. As Figures 6 and 7
indicate, the near-optimal gain γ∗ = 10.80 produces the
minimum maximum along-track separation after one day.
Figures 8 and 9 suggest that better overall along-track sep-
aration reduction in the `2-norm sense occurs for slightly
smaller gain; however it was decided to minimize the maxi-
mum separation over the simulation period. This is clearly
done for the selected value of γ∗.

Figures 10–12 and Table 3 show the effect of invariant
manifold tracking for the chosen gain γ∗. As with the un-
controlled nonlinear equations, relative position and velocity
discrepancies still exist. However, we see a significant reduc-
tion in the along-track drift with the controlled equations
(∆Y`n∗). This drift is reduced by a factor of nearly twelve

Table 3 Comparison of linear to controlled
first-order nonlinear dynamics for one day

q ‖q‖2 ‖q‖∞
∆X`n∗ , m 2.979 309e+00 2.245 446e−01
∆Y`n∗ , m 5.884 058e+00 4.533 900e−01
∆Z`n∗ , m 1.480 689e−01 1.225 756e−02
∆X ′

`n∗ , m/s 3.331 242e−03 2.658 801e−04
∆Y ′

`n∗ , m/s 6.640 942e−03 5.653 340e−04
∆Z′

`n∗ , m/s 2.442 324e−04 1.457 552e−05
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Fig. 10 Radial position difference between the linear
and controlled nonlinear solution with γ∗.
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ear and controlled nonlinear solution with γ∗.
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Fig. 12 Cross-track position difference between the lin-
ear and controlled nonlinear solution with γ∗.
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Fig. 13 Control accelerations and ∆V s using linear con-
straint manifold with γ∗.

to less than 0.5 m/day.
Figure 13 shows the continuous control acceleration pro-

files necessary to achieve this reduction in along-track drift.
The composite ∆V is seen to be roughly 8.49e−03 m/s/day
which, if scaled linearly, for one year would amount to
slightly more than 3m/s/year. The spiked structure of these
control accelerations is encouraging because they would
seem amenable to a low-thrust pulse-thruster implementa-
tion. Additionally, the small magnitude of the accelerations
may lend well to continuous low-thrust control—a concept
that has recently seen increased interest.

Conclusions
In this paper, a useful method of controlling the first-order

nonlinear Hill’s equations was presented. This method of
invariant manifold tracking produces control accelerations
that attempt to force the nonlinear system onto the invari-
ant manifold of the linear system specified by the periodic
linear system Hamiltonian. In doing so, the along-track po-
sition drift was reduced by a factor of nearly twelve using
only a simple search for a desirable control gain. No a priori
attempt was made to find the optimal value of the control
gain.

Whereas the along-track drift rate was significantly re-
duced, the radial and cross-track drift and all coordinate
drift rates suffered slight increases. This is not surprising,
since the only control objective was to minimize the maxi-
mum along-track drift during the simulation interval. As a
result, a single control gain was selected for the controlled
equations. There is nothing to suggest that the gain values
must be identical or even constant, only that they are real
and strictly nonnegative. Consequently, a second control
gain could have been selected to reduce the cross-track po-
sition drift. However, this would have significantly increased
the search space of adequate gains and was considered be-
yond the scope of this investigation.
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